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Abstract 

Estimation of the probability of failure to meet critical safety, performance, or constraint requirements or 

goals is important in engineering design and safety analyses, and in other risk analysis and management 

pursuits in business, finance, economics, environmental management, etc. This paper presents an interim 

set of test problems and results in evaluating the cost and accuracy performance of some current methods 

for calculating failure probabilities of magnitudes 10
-2

 to 10
-6

 in various low to moderate dimensional (2D 

to 9D) test problems mostly taken from engineering applications. 

I. Introduction 

Estimation of the probability of failure to meet critical safety, performance, or constraint  requirements 

or goals is important in engineering design and safety analyses, and in other risk analysis and management 

pursuits in business, finance, economics, environmental management, etc.  

 The uncertainty space in probability of failure (POF) problems can be sampled adaptively or non-

adaptively to provide estimates of failure probability. Adaptive methods use feedback from the response 

samples in an attempt to guide further sampling to efficiently narrow-in on a POF estimate for a given 

problem. Non-adaptive methods autonomously sample the uncertainty space without response feedback. 

An advantage of non-adaptive methods is that the final sample sets are not adapted to a single POF 

problem, and therefore not biased toward good performance on that problem but potentially poor 

performance on related POF problems for other response thresholds or other output quantities of the model 

that may be of interest. For example, POF values may be desired for various potential (uncertain) failure 

threshold levels and for several response quantities from a physics model such as pressure, temperature, 

etc. and at multiple points in time and/or space. Thus, non-adaptive methods may be more cost effective 

when multiple related POF problems are involved. But non-adaptive methods are usually substantially less 

efficient (higher number of model evaluations/samples) in attaining similar accuracies as adaptive methods 

when a single POF quantity is involved. By including both adaptive and non-adaptive methods in the 

following study involving single POF quantities, we can assess cost-accuracy penalties that non-adaptive 

methods incur relative to adaptive methods when interested in only a single POF quantity. 

 The POF methods considered all have an element of stochasticity in their performance because they 

involve random sampling of various sorts started from initial seeds for random number generation (RNG). 

We therefore evaluate cost, accuracy, and stochastic variability of the methods’ performance for several 

different starting seeds. 

 Section II introduces the POF estimation methods initially assessed in this study. Section III describes 

the initial test problems that the methods are evaluated on, and presents results from the performance study. 

Additional POF estimation methods and test problems will be included in future efforts. Section IV 

concludes with a brief summary and comparison of the methods’ performance. 
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II. Probability-of-Failure Estimation Methods Evaluated 

 The methods initially analyzed in this study are: Efficient Global Reliability Analysis (EGRA), Latin 

Hypercube Sampling (LHS), and Gaussian Process surrogate models (GPs) fit to Latin Hypercube samples. 

These methods are described in greater detail below. EGRA is an adaptive method, while LHS and GPs are 

non-adaptive. DAKOTA [Adams et al.] implementations of these methods were used in the study.  

A. Efficient Global Reliability Analysis (EGRA) 

 

 A foundational idea in reliability analysis is the identification of a specific response contour over the 

application space, called the limit state function. The limit state function separates the failure region from 

the non-failure region. A variety of local reliability method approaches exist such as the Mean-Value 

method and the First Order Reliability method (FORM) [Haldar & Mahadevan, 2000]. These approaches 

use local information and local optimization methods. Local reliability methods can be very efficient 

(scaling especially well for high-dimensional UQ problems) on suitable POF problems where model 

response is not highly nonlinear over the uncertainty space. But local methods can perform poorly (non-

robust, inaccurate, inefficient) when model response is highly nonlinear.  

The global reliability analysis method EGRA ([Bichon et al., 2008]) was developed to overcome some 

of the limitations of local reliability methods. EGRA estimates system response using a GP surrogate 

model (see section II.C below) based on a relatively limited number of simulations, and calculates the 

performance characteristic of interest by sampling the GP surrogate model instead of sampling with the 

expensive simulation model. Starting from a GP built initially from a very small number of LHS (see 

section II.C) random samples, EGRA adaptively chooses where to generate subsequent samples in an 

attempt to increase the emulator accuracy of the GP in the vicinity of the failure boundary. The resulting 

GP is then sampled using multimodal adaptive importance sampling [Srinivasan, 2008; Denny, 2001; 

Richard & Zhang, 2007] to calculate the probability of failure. By locating multiple points on or near the 

failure boundary, complex and highly nonlinear failure boundaries can be modeled, allowing a more 

accurate POF estimate. Because EGRA concentrates samples in the vicinity of the failure boundary where 

accuracy is important, it is relatively efficient in number of samples required for a given accuracy.  

B. Monte Carlo sampling of GPs built on Latin Hypercube Sampling  

 

     This method involves generating a specified number of Latin Hypercube samples [Conover, 1975] of 

the joint probability density of the input PDFs, then evaluating the model at the generated points in the 

uncertainty space. A GP surrogate is constructed from the sample points and response values. Gaussian 

process emulators (also called kriging models) are popular because they interpolate the data from which 

they are built; they provide a spatially varying estimate of the uncertainty of the emulation error between 

sampled values; and they do not require a specific type of sampling design.  The Dakota GP formulation is 

fairly standard, with an exponential correlation function where the correlation lengths are calculated by 

maximum likelihood estimation.  To obtain the POF estimate, the GP is evaluated by Monte Carlo (MC) 

sampling it with a large number of samples until the confidence interval (see section II.C) on the POF 

estimate is sufficiently small to get an acceptably precise estimate. 

C. Latin Hypercube Sampling with Confidence Intervals on Results 

 

Consider a system that in one or more portions of the input parameter “uncertainty” space exceeds a 

critical threshold level T above which the system is considered to fail. If the random-variable uncertainty 

space is randomly sampled via MC, then the number of system response values that exceed the threshold T, 

divided by the total number of MC samples, provides an estimate P* of the true failure probability P of the 

system. If enough samples are taken, then the estimate P* can be said with some percent likelihood or 

“confidence” to lie within a corresponding “confidence interval” of the true result P. From [Devore, 1982], 

when the number N of total MC samples meets the condition  

 

    N•P ≥ 5        (1) 
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then the following formula for 95% confidence intervals (CI) applies:  

 

                        | P - P*|  ≤ 1.96[P(1-P)/N]
1/2 

.       (2) 

 

When failure probability is being estimated by MC and the estimate P* is used on the right side of equation 

(2) instead of the exact (presumably unknown) probability P, then only approximate 95% CI are obtained. 
They will not strictly hold with the advertised 95% reliability or confidence, but with still perform 

reasonably close to the advertised odds (see e.g. [Romero, 2000]). Additionally it was found that eqn. (2) 

gives conservative confidence intervals when LHS is used instead of standard MC. Hence, the estimated 

95% CI are ventured to provide reasonable error estimates on MC and LHS results. We employ such CI 

estimates on the following test problems to assess the reliability of the CI estimates.  

III. Test Problems and Method Performance on Them 

In the following we present and evaluate cost, accuracy, and stochastic variability of the methods’ POF 

performance for several different starting seeds for random number generation. The DAKOTA[1] 

implementations of POF-darts is presently restricted to problems with uniform PDFs for the input 

uncertainties. Therefore the following problems involve only uniform input PDFs.  

 

2D Herbie Function 

 

The D-dimensional Herbie test function [Lee et al., 2011] is  

 

𝑦𝐻𝑒𝑟𝑏𝑖𝑒(�⃗�) = ∑ [exp(−(𝑥𝑑 − 1)2) + exp(−0.8(𝑥𝑑 + 1)2) − 0.05sin(8(𝑥𝑑 + 0.1))
𝐷

𝑑=1
].       (3) 

 

Following [Dalby & Swiler, 2014] we consider the response or output PDF of the D=2 version of this 

function for uniform PDF inputs defined over the [-2, 2] square as shown in Figure 1.  

 

 

 

 
  
Figure 1.  2D Herbie test function over [-2, 2] square (plotted upside-down for visualization purposes). 

 

 Figure 2 shows two 2D Herbie test problems A and B with indicated regions where response is lower 

than the threshold levels specified in the figure. The 2D joint-uniform PDF integrated over the failure 

regions equals the failure probability in each case. For problem A there are five disjoint failure regions. For 

problem B there is only one very small failure region.  

 

test problem A, threshold level = -1.065 test problem B, threshold level = -1.12656 
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Figure 2.  2D Herbie test problems showing red regions (problem A at left) and white region 

(problem B at right) where response is lower than the specified threshold levels above the figures. 
 

 

Table 1 lists failure probability estimates for problem A and all methods tried. The results in the table are 

plotted in Figure 3. With 95% reliability or confidence, the exact failure probability is deemed to lie within 

the stated 95% confidence intervals (CIs) about the mean estimate listed above the table. These CIs are 

calculated by the t-distribution method ([Iman, 1981; Helton et al., 1999]) per the note below the table. 

Note that these are CIs on the mean estimate (e.g. the mean probability of failure given three LHS 

replicates), in contrast to the Eqn. 2 CIs on the probability of failure estimates themselves. For problem A 

the CIs about the mean estimate are contained within the thickness of the black line in the plot. The CI 

results in the table for the LHS method are calculated with equation (2) and that row’s calculated failure 

probability and number of samples.  

 

Table 1.  Estimated failure probabilities for 2D Herbie test problem A  
 

Prob(y < -1.065) ≈ 1.50573E-2 ± 9.610E-5 = [1.4961E-2, 1.5153E-2]
* 

 

# of 
Samples 

EGRA Gaussian Processes LHS w/conf. intvls. 

seed 
A 

seed 
B 

seed 
C 

seed 
A 

seed 
B 

seed 
C 

seed 
A 

seed 
B 

seed 
C 

25    
4.078 
E-3 

0. 
4.005 
E-2 

   

55 
1.301 
E-2 

2.257 
E-2 

8.480 
E-3 

8.976 
E-3 

2.989 
E-2 

2.567 
E-2 

   

100    
1.438 
E-2 

1.322 
E-2 

1.029 
E-2 

   

200    
1.479 
E-2 

1.381 
E-2 

1.493 
E-2 

   

500    
1.471 
E-2 

1.476 
E-2 

1.483 
E-2 

1.0E-2 
±8.7E-3 

1.2E-2 
±9.5E-3 

1.8E-2 

±1.2E-2 

1000    
1.476 
E-2 

1.476 
E-2 

1.476 
E-2 

1.3E-2 
±7.0E-3 

1.7E-2 
±8.0E-3 

1.2E-2 

±6.7E-3 

*
95% confidence interval by t-distribution method ([Iman, 1981; Helton et al.,1999]) using three independent 

failure probability estimates based on 10
6
 LH samples each 
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Figure 3.  Failure probability estimates for Herbie 2D test problem A. (All results at the bottom of the plot 

indicate a value of 10
-4

 but are actually values of zero probability that could not be plotted on a log axis.) 

 

Note that the results in Figure 3 and the other results plots below have the abscissa values of some of the 

results offset so that the GP, EGRA, etc. results do not lie on top of each other. This makes the methods’ 

results distinct from each other so that easier visual comparisons can be made. The actual abscissa values 

for all methods are given in the tables of results.  

 

From Figure 3 the following observations are made. EGRA “converged” after 55 samples or simulations 

(a.k.a. “function evaluations”, FEVs) with the model for all RNG initial seeds A, B, and C, exhibiting 

significant seed dependence of individual results but small average absolute error, avg|error|. GPs with 55 

FEVs performed almost as well, having slightly worse variability and avg|error| than EGRA. GPs improve 

in variance and avg|error| at 100 FEVs and has negligible variance and avg|error| for ≥ 200 FEVs. The 

reasonable performance of GPs with 55 FEVs begs the question of how well they do with fewer samples. 

With 25 FEVs it is seen that GPs are not reliable; high variability exists with seeds A, B, C, and large 

avg|error| exists. Finally, LHS shows non-negligible variance and avg|error| for point estimates with N = 

500 and 1000 samples, but the confidence intervals are reliable for N ≥ 500 (N•pfail  ≥ 5). 

 

Table 2 lists failure probability estimates for problem B in Figure 2. The results in the table are plotted in 

Figure 4. The mean estimate and 95% confidence intervals regarding the exact failure probability listed 

above the table are calculated per the note below the table. The CIs in the table for the LHS method are 

calculated with equation (2) and that row’s calculated failure probability and number of samples.  
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Table 2.  Estimated failure probabilities for 2D Herbie test problem B  
 

Prob(y < -1.12565) ≈ 1.0225E-4 ± 1.4890E-5 = [8.7360E-5, 1.1714E-4]
* 

 

# of 
Samples 

EGRA Gaussian Processes LHS w/conf. intvls. 

seed 
A 

seed 
B 

seed 
C 

seed 
A 

seed 
B 

seed 
C 

seed 
A 

seed 
B 

seed 
C 

25    0. 0. 
1.3920 
E-2 

   

37   0.       

55 
1.6329
E-4 

0.  0. 
7.80 
E-4 

4.4560
E-3 

   

100    
2.4360
E-3 

0. 0.    

200    0. 0. 
7.300 
E-5 

   

500    
1.790 
E-4 

8.80 
E-5 

1.230 
E-4 

   

1000    
8.80 
E-5 

8.80 
E-5 

8.80 
E-5 

   

5x10^4       
1.0E-4 
±8.8E-5 

1.2E-4 
±9.6E-5 

4.0E-5 
±5.5E-5 

10^5       
1.2E-4 
±6.8E-5 

1.2E-4 
±6.8E-5 

1.5E-4 
±7.6E-5 

*
95% confidence interval by t-distribution method [Iman, 1981; Helton et al.,1999] using four independent 

failure probability estimates based on 10
6
 LH samples each 
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Figure 4.  Failure probability estimates for Herbie 2D test problem B. (All results at the bottom of the plot 

indicate a value of 10
-6

 but are actually values of zero probability that could not be plotted on a log axis.) 

 

The following observations are made. EGRA “converged” after 55, 55, and 37 FEVs for seeds A, B, and C, 

giving non-zero failure probability only for seed A with 55 FEVs. (All results at the bottom of the plot 

indicate a value of 10
-6

 but are actually values of zero that could not be plotted on the log axis.) Thus, 

significant seed dependence and premature convergence occurred with EGRA for this problem. The GP 

method is not reliable until ≥ 500 FEVs. LHS shows non-negligible variance and avg|error| for point 

estimates with 5x10
4
 and 10

5 samples, but confidence intervals are reasonably reliable for N ≥ 5x10
4
 

(N•pfail  ≥ 5). 

2D Vibration Problem 

 

The 2D vibration absorber problem taken from [Ramu, 2007; Acar & Ramu, 2014] has the following 

response function where uniform PDF inputs β1 and β2 are defined over the uncertainty ranges 0.9 ≤ β1, β2 

≤ 1.1.  

  𝑦(𝛽1, 𝛽2) = 
|1−(1/𝛽2)

2|

√[1−(
1

𝛽2
)
2
−(

1

𝛽1
)
2
[𝑅+1−(1/𝛽2)

2]]
2

+4𝛾2(
1

𝛽1
)
2
[1−(

1

𝛽2
)
2
]
2

   (4) 
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Constants R = γ = 0.01 are the other parameter inputs to eqn. (4). Two disjoint partial “cactus-leaf” like 

failure regions exist in the 2D parameter space where response exceeds a certain threshold value. See e.g. 

[Acar & Ramu, 2014] for visualization of the irregularly shaped failure regions. 

 

Table 3 lists failure probability estimates for a threshold level T = 48. The results in the table are plotted in 

Figure 5. The CIs about the mean estimate are contained within the thickness of the black line in the plot. 

The mean estimate of the exact failure probability and the 95% confidence intervals on the mean estimate 

and the CIs in the table for the LHS results are calculated via the procedures explained earlier.  

 

 

 

Table 3.  Estimated failure probabilities for 2D Vibration problem 

 

Prob(y > 48) ≈ 1.9450E-2 ± 5.0995E-5 = [1.9397E-2, 1.9499E-2]
* 

 

# of 
Samples 

EGRA Gaussian Processes LHS w/conf. intvls. 

seed 
A 

seed 
B 

seed 
C 

seed 
A 

seed 
B 

seed 
C 

seed 
A 

seed 
B 

seed 
C 

25    0. 
1.0370 
E-3 

0.    

55 
1.7304
E-2 

1.6701
E-2 

9.4082
E-3 

1.4067
E-2 

9.7260 
E-3 

9.4240
E-3 

   

100    
1.3362
E-2 

3.6640 
E-3 

7.6640
E-3 

   

200    
5.3680
E-3 

1.9557 
E-2 

1.5347
E-2 

   

500    
1.8099
E-2 

1.5354 
E-2 

1.6963
E-2 

0. 0. 0. 

1000    
1.8870
E-2 

1.9936 
E-2 

1.6892
E-2 

1.60E-2 
±7.8E-3 

2.50E-2 
±9.7E-3 

1.60E-2 
±7.8E-3 

*
95% confidence interval by t-distribution method using three independent fail probability estimates based 

on 10
6
 LH samples each 
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Figure 5.  Failure probability estimates for 2D Vibration Amplitude problem. (All results at the bottom of 

the plot indicate a value of 10
-4

 but are actually values of zero that could not be plotted on a log axis.) 

 

EGRA “converged” after 55 simulations with all seeds A, B, C, giving reasonable precision and 

accuracy—usually better than GPs. Because GPs gave results with 55 simulations that are less than an 

order of magnitude off the indicated true failure probability, it was decided to see how they’d do with 25 

FEVs. GPs were not reliable with 25 simulations; some results are 0.0 probabilities. LHS is very inaccurate 

with 500 simulations (0.0 probabilities and 0.0 confidence intervals for all seeds A, B, C), but with 1000 

FEVs LHS gives reasonable accuracy and precision of point estimates and reliable confidence intervals. 

1000 FEVs equates to approximately N•pfail ≥ 20, so this particular combination of function, threshold 

level, and joint PDF did not meet the N•pfail ≥ 5 ventured criterion equation (1) for reasonable LH 

confidence intervals. 

5D Electronic Circuit 

 

A numerical model of a proprietary circuit with uniform PDFs for five inputs to the model is assessed 

next. Details of the circuit or model cannot be presented, but the performance of the POF methods on 

contrived failure probability problems can be presented. A threshold value that makes one of the output 

responses indicate a circuit failure of probability ~0.0001 was determined by iteration. Table 4 lists failure 

probability estimates. The results in the table are plotted in Figure 6. The mean estimate of the exact failure 

probability and the 95% confidence intervals on the mean estimate and the CIs in the table for the LHS 

results are calculated via the procedures explained earlier.  

 

EGRA converged with 31 function evaluations and is most accurate and precise over seeds A, B, C.  

GPs with 31 simulations do not perform well, having low accuracy and repeatability. But good precision 

and accuracy are obtained at 100 FEVs. Precision and average accuracy then decline with more 

simulations. LHS gives accurate point estimates and reliable, fairly small confidence intervals for all seeds 

A, B, C with orders of magnitude more simulations, 5x10
4
 and 10

5
 (N•pfail ≥ 5). 
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Table 4.  Estimated failure probabilities for 5D Circuit problem 
 

Pfail ≈ 1.6475E-4 ± 2.81E-5 = [1.370E-4, 1.930E-4]
* 

 

# of 
Samples 

EGRA Gaussian Processes LHS w/conf. intvls. 

seed 
A 

seed 
B 

seed 
C 

seed 
A 

seed 
B 

seed 
C 

seed 
A 

seed 
B 

seed 
C 

31 
1.6212
E-4 

1.6286
E-4 

1.5526
E-4 

5.0 
E-6 

0. 
2.70 
E-5 

   

100    
1.060 
E-4 

1.460 
E-4 

1.360 
E-4 

   

200    
1.540 
E-4 

8.10 
E-5 

6.40 
E-5 

   

500    
6.90 
E-5 

8.10 
E-5 

1.070 
E-4 

   

1000    
6.50 
E-5 

1.210 
E-4 

1.440 
E-4 

   

5x10^4       
2.40E-4 

±1.4E-4 

1.60E-4 

±1.1E-4 

1.40E-4 

±1.0E-4 

10^5       
1.50E-4 

±7.6E-5 

2.05E-4 

±8.8E-5 

1.60E-4 

±7.8E-5 

*
95% confidence interval by t-distribution method using four independent fail probability estimates based on 

10
6
 LH samples each 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.  Failure probability estimates for 5D Circuit problem. (All results at the bottom of the plot 

indicate a value of 10
-7

 but are actually values of zero that could not be plotted on a log axis.) 
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9D Steel Column Problem 

 

This problem involves determining the probability that the stress on a steel column will not meet a 

specified margin of safety relative to its yield stress Fs. The problem is loosely modeled after the one in 

[Kuschel & Rackwitz, 1997] and [Bichon, 2010]. The margin 𝑔 is calculated from the following equations.   

 

𝑔 = 𝐹𝑆 − 𝑃(
1

2𝐵𝑇
+

𝐷𝑜

𝐵𝑇𝐻

𝐸𝑏

𝐸𝑏−𝑃
)                      (5) 

     

     P = P1 + P 2 + P 3                              (6) 

 

     𝐸𝑏 =
𝜋2𝐸𝐵𝑇𝐻2

2𝐿2  .                          (7) 

 

The current problem uses L = 7.5 m for the length of the column (deterministic) and nine input random 

variables (uniform PDFs) with upper and lower extents listed in Table 5. 
 

Table 5.  Uniform PDF Inputs for Steel Column problem 

 

variable description PDF lower extent PDF upper extent 
    

Fs yield stress, MPa 260 575 

P1 dead weight load, kN 250 650 

P2 variable load, kN 150 870 

P3 variable load, kN 150 870 

B flange breadth, mm 185 215 

T flange thickness, mm 11.5 27.5 

H profile height, mm 75 125 

D0 initial deflection, mm -20 80 

E elastic modulus, MPa 1 41 

 

 
 

 

A positive safety margin exists when the value of 𝑔 is positive. We specify a desired safety margin of 

𝑔=260 MPa and determine the probability prob(𝑔≤ 260 MPa) that this margin is not met. The failure 

probability for this problem with the specified inputs is ~0.001. Table 6 lists failure probability estimates 

by the various methods. The results in the table are plotted in Figure 7. The mean estimate of the exact 

failure probability and the 95% confidence intervals on the mean estimate and the CIs in the table for the 

LHS results are calculated via the procedures explained earlier.  
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Table 6.  Estimated failure probabilities for 9D Steel Column problem 

 

Prob(𝑔 < 260) ≈ 1.035E-3 ± 2.4843E-5 = [1.0102E-3, 1.0598E-3]
* 

 

# of 
Samples 

EGRA Gaussian Processes LHS w/conf. intvls. 

seed 
A 

seed 
B 

seed 
C 

seed 
A 

seed 
B 

seed 
C 

seed 
A 

seed 
B 

seed 
C 

10          

25    
1.202 
E-3 

1.050 
E-3 

1.037 
E-3 

   

50    
1.052 
E-3 

1.086 
E-3 

1.072 
E-3 

   

100    
1.033 
E-3 

1.036 
E-3 

1.035 
E-3 

   

108   
1.0327
E-3 

      

114  
1.0359
E-3 

       

142 
1.0106
E-3 

        

200    
1.040 
E-3 

1.044 
E-3 

1.041 
E-3 

   

500    
1.040 
E-3 

1.041 
E-3 

1.039 
E-3 

   

10^4       
1.20E-3 

±6.8E-4 

1.10E-3 

±6.5E-4 

1.20E-3 

±6.8E-4 

*
95% confidence interval by t-distribution method using three independent fail probability estimates based 

on 10
6
 LH samples each 
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Figure 7.  Failure probability estimates for 9D Steel Column problem. 

 

 

GPs achieved reasonable accuracy and precision with as little as 25 samples. Reasonable performance 

with such few samples indicates that the function is probably only mildly nonlinear over the UQ space. GPs 

were not tried with 10 samples because the current implementation in DAKOTA does not allow GPs to be 

used with such few samples for a 9D problem. GPs achieved high accuracy and precision for ≥ 50 sims. 

EGRA required 142, 114, 108 FEVs to converge for seeds A, B, C respectively, giving high accuracy and 

precision even with the highly varying number of samples to convergence. LHS required two orders of 

magnitude more FEVs (10
4
) for reliable 95% confidence intervals, so N•pfail ≥ 10 is required in contrast to 

the ventured rule of thumb equation (1). 

IV. Comparative Performance of the Methods 

For all methods the prediction errors were to the non-conservative side (prediction of smaller failure 

probabilities than actual) in over 2/3 of the trials for all test problems and numbers of samples.   

The adaptive EGRA method was often the most cost effective method based on a combination of 

accuracy and cost considerations. But EGRA sometimes exhibited significantly premature convergence 

which led to undesirably large estimation error. Furthermore, EGRA produced estimates that could vary 

significantly with the starting seed and sample set used. The other methods, being stochastic estimation 

methods as well, also exhibited significant seed dependence.  

The non-adaptive LHS/GP method was able to determine reasonably accurate failure estimates for most 

of the test problems with 100 function evaluations or fewer. The non-adaptive LHS/GP method generally 

appears to incur a significant accuracy penalty vs. the adaptive EGRA method for the same # of samples.  

Given the significant seed dependence of all the methods it appears that for each method a multi-seed 

strategy may need to be developed that can take the multiple estimates and produce an appropriately 

reliable (say 90% reliable) error/uncertainty bar about the mean of the estimates. This will significantly 

decrease the economy of these methods but it appears they would still deliver substantial cost savings 

compared to reliable MC estimates with similar sized error/uncertainty bars (the LHS method was often 

one to two orders of magnitude more expensive to obtain accuracies comparable to the other stochastic 

methods). Empirically, the number of samples N for reliable error/uncertainty bars (confidence intervals) 

on LHS estimates ranged from 5 ≤ N•pfail ≤ 20. 
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IV. Closing 

More POF methods, test problems, and analysis of relative cost-accuracy performance are presented in 

associated studies [Ebeida et al., 2015], [Swiler & Romero, 2015], [Romero et al., 2016].  
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